3.2.68 \(\int \frac {(a x^2+b x^3)^{3/2}}{x^5} \, dx\)

Optimal. Leaf size=73 \[ \frac {3 b \sqrt {a x^2+b x^3}}{x}-3 \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )-\frac {\left (a x^2+b x^3\right )^{3/2}}{x^4} \]

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2020, 2021, 2008, 206} \begin {gather*} -\frac {\left (a x^2+b x^3\right )^{3/2}}{x^4}+\frac {3 b \sqrt {a x^2+b x^3}}{x}-3 \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*x^2 + b*x^3)^(3/2)/x^5,x]

[Out]

(3*b*Sqrt[a*x^2 + b*x^3])/x - (a*x^2 + b*x^3)^(3/2)/x^4 - 3*Sqrt[a]*b*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b*x^3]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2021

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*(m + n*p + 1)), x] + Dist[(a*(n - j)*p)/(c^j*(m + n*p + 1)), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {\left (a x^2+b x^3\right )^{3/2}}{x^5} \, dx &=-\frac {\left (a x^2+b x^3\right )^{3/2}}{x^4}+\frac {1}{2} (3 b) \int \frac {\sqrt {a x^2+b x^3}}{x^2} \, dx\\ &=\frac {3 b \sqrt {a x^2+b x^3}}{x}-\frac {\left (a x^2+b x^3\right )^{3/2}}{x^4}+\frac {1}{2} (3 a b) \int \frac {1}{\sqrt {a x^2+b x^3}} \, dx\\ &=\frac {3 b \sqrt {a x^2+b x^3}}{x}-\frac {\left (a x^2+b x^3\right )^{3/2}}{x^4}-(3 a b) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {x}{\sqrt {a x^2+b x^3}}\right )\\ &=\frac {3 b \sqrt {a x^2+b x^3}}{x}-\frac {\left (a x^2+b x^3\right )^{3/2}}{x^4}-3 \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 40, normalized size = 0.55 \begin {gather*} \frac {2 b \left (x^2 (a+b x)\right )^{5/2} \, _2F_1\left (2,\frac {5}{2};\frac {7}{2};\frac {b x}{a}+1\right )}{5 a^2 x^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*x^2 + b*x^3)^(3/2)/x^5,x]

[Out]

(2*b*(x^2*(a + b*x))^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, 1 + (b*x)/a])/(5*a^2*x^5)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 13.19, size = 75, normalized size = 1.03 \begin {gather*} \frac {\left (x^2 (a+b x)\right )^{3/2} \left (\frac {\sqrt {a+b x} (2 (a+b x)-3 a)}{x}-3 \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )\right )}{x^3 (a+b x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a*x^2 + b*x^3)^(3/2)/x^5,x]

[Out]

((x^2*(a + b*x))^(3/2)*((Sqrt[a + b*x]*(-3*a + 2*(a + b*x)))/x - 3*Sqrt[a]*b*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]))/
(x^3*(a + b*x)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 136, normalized size = 1.86 \begin {gather*} \left [\frac {3 \, \sqrt {a} b x^{2} \log \left (\frac {b x^{2} + 2 \, a x - 2 \, \sqrt {b x^{3} + a x^{2}} \sqrt {a}}{x^{2}}\right ) + 2 \, \sqrt {b x^{3} + a x^{2}} {\left (2 \, b x - a\right )}}{2 \, x^{2}}, \frac {3 \, \sqrt {-a} b x^{2} \arctan \left (\frac {\sqrt {b x^{3} + a x^{2}} \sqrt {-a}}{a x}\right ) + \sqrt {b x^{3} + a x^{2}} {\left (2 \, b x - a\right )}}{x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^5,x, algorithm="fricas")

[Out]

[1/2*(3*sqrt(a)*b*x^2*log((b*x^2 + 2*a*x - 2*sqrt(b*x^3 + a*x^2)*sqrt(a))/x^2) + 2*sqrt(b*x^3 + a*x^2)*(2*b*x
- a))/x^2, (3*sqrt(-a)*b*x^2*arctan(sqrt(b*x^3 + a*x^2)*sqrt(-a)/(a*x)) + sqrt(b*x^3 + a*x^2)*(2*b*x - a))/x^2
]

________________________________________________________________________________________

giac [A]  time = 0.21, size = 62, normalized size = 0.85 \begin {gather*} \frac {\frac {3 \, a b^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right ) \mathrm {sgn}\relax (x)}{\sqrt {-a}} + 2 \, \sqrt {b x + a} b^{2} \mathrm {sgn}\relax (x) - \frac {\sqrt {b x + a} a b \mathrm {sgn}\relax (x)}{x}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^5,x, algorithm="giac")

[Out]

(3*a*b^2*arctan(sqrt(b*x + a)/sqrt(-a))*sgn(x)/sqrt(-a) + 2*sqrt(b*x + a)*b^2*sgn(x) - sqrt(b*x + a)*a*b*sgn(x
)/x)/b

________________________________________________________________________________________

maple [A]  time = 0.06, size = 72, normalized size = 0.99 \begin {gather*} -\frac {\left (b \,x^{3}+a \,x^{2}\right )^{\frac {3}{2}} \left (3 a b x \arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )-2 \sqrt {b x +a}\, \sqrt {a}\, b x +\sqrt {b x +a}\, a^{\frac {3}{2}}\right )}{\left (b x +a \right )^{\frac {3}{2}} \sqrt {a}\, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a*x^2)^(3/2)/x^5,x)

[Out]

-(b*x^3+a*x^2)^(3/2)*((b*x+a)^(1/2)*a^(3/2)-2*(b*x+a)^(1/2)*x*b*a^(1/2)+3*arctanh((b*x+a)^(1/2)/a^(1/2))*x*a*b
)/x^4/(b*x+a)^(3/2)/a^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (b x^{3} + a x^{2}\right )}^{\frac {3}{2}}}{x^{5}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^5,x, algorithm="maxima")

[Out]

integrate((b*x^3 + a*x^2)^(3/2)/x^5, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,x^3+a\,x^2\right )}^{3/2}}{x^5} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2 + b*x^3)^(3/2)/x^5,x)

[Out]

int((a*x^2 + b*x^3)^(3/2)/x^5, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (x^{2} \left (a + b x\right )\right )^{\frac {3}{2}}}{x^{5}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a*x**2)**(3/2)/x**5,x)

[Out]

Integral((x**2*(a + b*x))**(3/2)/x**5, x)

________________________________________________________________________________________